

Figure 11.6. Single-phase half-wave controlled converter: (a) circuit diagram and (b) circuit waveforms for an inductive load.

Figure 11.7. Half-wave, controlled converter thyristor trigger delay angle α versus: (a) thyristor conduction angle, β-α, and (b) normalised mean load current.

Fig. (1): Relation between thyristor trigger delay angle (α) versus thyristor extinction angle angle (β) (at using RL load)

	Pro	gram	s used to	o get	Fig.	(1):	
al	pha_	and	beta.m	&	BE	ETA	.m

4th year 1st Semester, 2015-2016 Power Electronics (II)

Shepherd Book Page 331 & 334 How To Calculate Beta Using Curves in AC Voltage Controller Has RL load

Fig. 8.15 Extinction angle versus firing-angle for single-phase controller. Series R-L load.

Fig. 8.18 Fundamental current versus firing-angle for single-phase controller. Series R-L load.